Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative
نویسندگان
چکیده
In the present paper, we determine estimations on Atangana-Baleanu-Caputo fractional derivative at extreme points. With assistance of obtained, derive comparison results. Peano's type existence results established for nonlinear differential equations involving derivative. The acquired are then utilized to deal with local, extremal and global solution.
منابع مشابه
Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel
A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...
متن کاملAsymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative
This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some ot...
متن کاملPositive Solution of a Nonlinear Fractional Differential Equation Involving Caputo Derivative
This paper is concerned with a nonlinear fractional differential equation involving Caputo derivative. By constructing the upper and lower control functions of the nonlinear term without any monotone requirement and applying the method of upper and lower solutions and the Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial value problem are investigat...
متن کاملFractional Herglotz variational problems with Atangana–Baleanu fractional derivatives
The purpose of this paper is to solve fractional calculus of variational Herglotz problem depending on an Atangana-Baleanu fractional derivative. Since the new Atangana-Baleanu fractional derivative is non-singular and non-local, the Euler-Lagrange equations are proposed for the problems of Herglotz. Fractional variational Herglotz problems of variable order are considered and two cases are sho...
متن کاملImplicit Fractional Differential Equations via the Liouville–Caputo Derivative
We study an initial value problem for an implicit fractional differential equation with the Liouville–Caputo fractional derivative. By using fixed point theory and an approximation method, we obtain some existence and uniqueness results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos Solitons & Fractals
سال: 2021
ISSN: ['1873-2887', '0960-0779']
DOI: https://doi.org/10.1016/j.chaos.2020.110556